Apache MXNet 是一个高效灵活的深度学习框架,使开发人员能够混合符号和命令式编程,以实现最大的生产力。MXNet 的核心是动态依赖调度程序,可实时并行化符号和命令式操作,以及图形优化层,可提高符号执行速度和内存效率。作为一种便携式轻量级工具,MXNet 可以跨多个 GPU 和机器进行扩展。

除了技术能力之外,MXNet还代表了一个渴望使AI民主化的社区。它提供了构建深度学习系统的指南和蓝图,并与黑客分享了有关深度学习系统的有趣见解。

MXNet的功能包括一个类似NumPy的编程接口,该接口与新的且易于使用的Gluon 2.0接口集成,使希望深入研究深度学习的NumPy用户可以访问它。此外,自动混合以传统符号编程的速度提供命令式编程。该框架是轻量级的,内存效率高的,并且通过ARM上的本机交叉编译支持以及TVM,TensorRT和OpenVINO等生态系统项目移植到智能设备。

MXNet 还可以通过 ps-lite、Horovod 和 BytePS 扩展到具有自动并行性的多 GPU 和分布式设置。其可扩展的后端允许与自定义加速器库和内部硬件进行完全自定义和集成,而无需维护分叉。此外,MXNet支持多种编程语言,包括Python,Java,C++,R,Scala,Clojure,Go,Javascript,Perl和Julia。它也是云友好的,并与AWS和Azure兼容。