Fastai 是一个全面的深度学习库,旨在支持从业者快速轻松地在标准深度学习领域获得最先进的结果,并为研究人员提供开发新方法的灵活性。它通过分层架构实现这一点,该架构采用解耦抽象来表达深度学习和数据处理技术的常见底层模式。这些抽象通过Python语言的动态性和PyTorch库的灵活性简洁明了地表达出来。
Fastai具有用于Python的新型类型调度系统,以及用于张量的语义类型层次结构。其GPU优化的计算机视觉库可以在纯Python中扩展。此外,它还提供了一个优化器,将现代优化器的通用功能重构为两个基本部分,允许在几行代码中实现优化算法。还包括一个新颖的 2 路回调系统,可以访问数据、模型或优化器的任何部分,并在训练期间随时更改它。新的数据块API以及许多其他功能进一步区分fastai。
Fastai 的架构围绕两个主要设计目标构建:平易近人和高效,同时又可破解和可配置。这是通过利用提供可组合构建块的较低级别 API 的层次结构来实现的。因此,想要修改高级 API 或添加特定行为以满足其需求的用户不需要学习最低级别的 API。